Sustainable Infrastructure and Asset Management

Kiyoshi KOBAYASHI

What is Asset Management?

The optimal allocation of the scare budget between the new arrange-ment of infrastructure and rehabilitation/maintenance of the existing infrastructure to maximize the value of the stock of infrastructure and to realize the maximum outcomes for the citizens

Asset management

- Pavement management (highway, runway)
- Railway management
- Bridge management
- Facility management
- Tunnel management
- Water supply system management
- Port facility management
- Embankment management
- Slope management
- River facility/Dam facility management
- Forest management

Dam Facility Management

- Long-term Sustainable Infrastructure
- Comprehensive management of sedimentation systems

(environmental change, ecological impacts, riverbed degradation, river morphology change, and coastal erosion)

Large-scale risks

socio-economic change, volatility in sedimentation, green house effects

Dam facilities based on renewal duration and management points

Renewal	Facilities	Management	Others
Short Several yrs - Several 10 yrs	Mechanical Electrical Architectural	Reduction of total cost of Inspection , Maintenance , Repair and	Improvement of service level Technical Innovation
Long Several 10 yrs - Several 100 yrs	Reservoir (Sedimentatio n)	Renewal Reduction of Life Cycle cost	Renewal duration will be expanded by proper countermeasures
Extra long	Dam body	Reduction of Inspection and Maintenance cost Risk assessment	No Renewal will be necessary for extra long duration and present value of the renewal can not be
Occasional	Reservoir slope Land slide Earthquake	Inspection Immediate action	Responding up to certain level during construction period

Hierarchical asset management cycles

Probabilistic analysis of reservoir sedimentation

KAWAMATA dam (Tone River)

 Annual record of specific sediment yield can be plotted on log-normal probability paper using Weibull plot.

 $F(x_i) = i/(N+1)$

Expected gross storage capacity change without sedimentation management

All new proposal and under construction projects included

Existing storage capacity

Japan

Chubu Region

Reservoir sedimentation in Sakuma dam

Future estimation of reservoir sedimentation in Sakuma dam

Sedimentation management dams in Japan

Reservoir sedimentation

Excavated and utilized for Kobe Airport

Development of efficient and environmentally compatible sediment management techniques

- "Take", "Transport" and "Discharge"
 - Sediment flushing/sluicing and sediment bypassing should be introduced more.
 - The sediment trucking and supply, and the Hydro-suction Sediment Removal System (HSRS) are needs to be improved furthermore and introduced as supplementary measures.

Asset management

- Life cycle cost (LCC) minimization
 Rehabilitation and Maintenance
 from proactive maintenance to preventive maintenance
- Operation, Replacement, Expansion, Removal, Real Option

Asset management technology 1

- Inspection technology
- Inventory Database
- Tool box
- Performance curve (Markov matrix)
- LCC evaluation (Markov decision model)
- Computer systems

Asset management technology 2

- Process evaluation/reengineering
- Policy evaluation (outcome/output/input)
- Performance-based asset management contract
- Citizen participation

Two-staged project

$$t_0 \xrightarrow[30]{} t_1 \xrightarrow[70]{} t_2$$

Cost

30 billion JPY

70 billion JPY

100 billion JPY

Benefit

three scenarios

1/3 18 billion JPY

1/3 90 billion JPY

1/3 0 billion JPY

Cost-benefit analysis

$$B = (1/3) 180 + (1/3) 90 + (1/3) 0 = 90$$

$$C = 100$$

$$B - C = 90 - 100 = -10$$
 decline

Real Option

Additional cost 70 billion JPY

$$B - C = 180-70 = 110$$
 Scenario 1

$$B - C = 90 - 70 = 20$$
 Scenario 2

$$B-C = 0 - 70 = -70$$
 Scenario 3 \longrightarrow decline

$$(1/3) 110 + (1/3) 20 + (1/30) 0 = 43.3$$

Real Option =
$$43.3 - 30 = 13.3 > 0$$

investment

Life cycle course decision making as a real option

