

Flood risk, prevention and control in Spain: the case of Tagus basin

I Flood risk management

Driving forces affecting floods

- Risk of flooding results from a combination of natural factors and human interferences
- Natural factors are more related with meteorological ,topographic, vegetation,soil... conditions, specially rainfall
- Human actions can influence flooding:
 - Affecting the run-off patterns (e.g. deforestation, urbanisation,)
 - Increasing the possible impact of flooding (e.g. occupation of flood plains)

BEST PRACTICES

(Draft Water Directors UE)

- Integrated river basin approach
 - Need for a river basin approach
 - Need for an integrated approach
 - Need for an integrated and comprehensive action plan
 - Need for international and tranboundary cooperation
 - Need for financial instruments
- Public awareness, public participation and insurance
 - Public awareness
 - Public participation
 - Insurance
- Non-structural measures and retention of water
 - Structural measures and their impact
- The main preventive non-structural measures should be :
 - Land use, zoning and risk assessment
 - Prevention of pollution
 - Early warning and forecast systems
 - Flood Emergency

FLOOD RISK MANAGEMENT DIRECTIVE RISK ASSESSMENT
-Risk preliminary assessment

OD MANAGEMENT

- -Hazard maps
- -Risk maps
 - -Inhabitants affected
 - -Economic damages
- -Flood Risk Management Plans

Flood risk, prevention and control in Spain: the case of Tagus basin

II Flood in Spain

Natural driving forces: Rainfall

Ratio (%) between maximum daily precipitation and mean annual precipitation (period 1940/41-1995/96). Source: CEDEX with data from Eurostat

Flood risk, prevention and control in Spain: the case of Tagus basin

III Flood prevention and risk management in Spain

III Flood prevention and risk management in Spain

- Land use
- Dams coordinated management
- Civil Protection Plan
 - Risk mapping
- Early Warning System
- Insurance
- International bodies

III a. Land use

Land use (Spain)

- It is necessary improve the coordination between Public Authorities at National, Regional and Local level
- Administrations with different responsibilities are involved: land planning management (Autonomous Communities), building authorisations (municipalities), Civil Protection
- It is not allowed (Land Use Act) to build at the areas classified as risked according with specifically regulations
- It is necessary link urban plans and flood risk plans (Civil Protection)

III b. Dams coordinated management

It is a important issue in Spain (more than 1.200 large dams)

Dams Safety

- There are special regulations
- Inspection by Water Directorate
- Require to be approved by Ministry of Environment
 - Operational Rules
- By Ministry of Environment and Civil Protection
 - Emergency Plans in case of heavy failure

HIDRAULIC INFRASTRUCTURES

Data of the operating reservoir and inconstruction (September 1996)

Reservoirs with storage capacity >10 hm3

Plan	Número de embalses en explotación	Capacidad de los embalses en explotación (hm³)	Superficie inundada (ha)	Capacidad de los embalses en ejecución (hm³)	Capacidad total (explotación y ejecución) (hm ³)
Norte I	53	3.040	11.771	0	3.040
Norte II	27	559	2.913	0	559
Norte III	32	122	712	0	122
Duero	67	7.654	35.417	13	7.667
Tajo	198	11.131	58.806	4	11.135
Guadiana I	90	8.508	48.039	335	8.843
Guadiana II	36	684	4.654	92	776
Guadalquivir	107	8.208	43.293	659	8.867
Sur	37	1.160	5.212	159	1.319
Segura	27	1.144	6.580	79	1.223
Júcar	47	3.343	17.263	6	3.349
Ebro	151	6.761	40.294	941	7.702
C. I. Cataluña	14	692	2.450	80	772
Galicia Costa	22	688	4.446	0	688
Total península	908	53.694	281.850	2.368	56.062
Baleares	2	11	119	0	11
Canarias	114	101	477	0	101
Total España	1.024	53.806	282,445	2.368	56.174

PUBLIC ADMINISTRATION OF WATER IN SPAIN

Basin territories - CCHH

Basin Authorities

➤ 1. Attached to Ministry Of Environment CONFEDERACIONES HIDROGRÁFICAS :

Northern Basin

Duero

Tajo

Guadiana

Guadalquivir

Segura

Júcar

Ebro

> 2. Attached to Autonomous Regions

Cuencas Internas de Cataluña

Galicia Costa

Cuencas Internas del País Vasco

Cuencas Internas Andalucía

Atlantics

Mediterranean

Baleares Islands Canary Islands

Reservoir Committee: in case of flood the PERMANENT COMMITTEE coordinate the operation at basin level, providing information to Civil Protection

IIIc. Civil Protection Emergency Plans

Risk mapping

LEGAL FRAMEWORK

CENTRAL ADMINISTRATION - GOVERNEMENT

Risk mapping

Zone 1: Frequency < 25 years

Zone 2: Frequency 25 to 100 years

Zone 3: Frequency < 25 years

Zone 4: Frequency 25 to 100 years

Zone 5: Frequency 100 to 500 years

Zone 6: Frequency 100 to 500 years

water level>0.8 m. water level>0.8 m.

water level<0.8 m.

water level<0.8 m.

water level>0.8 m.

water level<0.8 m.

SCHEMATIC STRUCTURE

CENTRAL ADMINISTRATION - GOVERNEMENT

III d. Early Warning System

CURRENT SAIH NETWORK

Automatic Hydrological Information System (SAIH) main objectives:

- -Supply of information automatically in real time
- **-Forecasting** in short term the evolution of levels and flows
- **-Management** of the exploitation of the reservoirs and canals

1.775Control Flow gauges rivers
Points Flow gauges in channels
Rain gauges
Booster station SAIHs Working

Investment updated (2006):
374 M€
Operational cost updated: 18
M€/year SAIHs Project
Cuencas intracomunitarias

BASIC DIAGRAMS OF SAIH NETWORKS

Radio Links

Satellite Links

FUNCTIONS

- > Data Acquisition : TRANSDUCERS
- > Data Communication : TELECOMMUNICATION NETKORKS
- ➤ Data Procesing : CONTROL CENTRE
- > Aided Models for DECISION MAKING

INSTRUMENTATION

HYDRAULICS-HYDROLOGICS VARIABLES

DAMS

Transducers Types

Submerged Quartz Transducer **Water Level**

Hydrostatic-Pneumatic Balance

Float-Counterweight

Hydrostatic-Pneumatic Quartz Transducer

Electomagnetic Flowmeter **Water Flow** Ultrsonic Flowmeter

Angle measurement **Gates-Valves Position**

Mechanics **Optics** Capacitive Resistives

RIVERS-CHANNELS

Float-Counterweight **Water Level**

Resistives Pneumatic Ultrasonics CLIMATIC AND ENVIRONMENTAL VARIABLES

RAINFALL Rainfall Gauges

SNOW Heat Rainfall Gauges

Weight Rainfall Gauges

Resistance Temperature Detectors RTD **TEMPERATURE**

SNOW COVER Nyvometer

+ Data Acquisition Systems

+ Energy Suply Systems

CHANNELS

Ultrasonics **Water Flow** Electromagnetics

MODEL ENVIRONMENT FOR DECISION MAKING

Flood: Hydrological basin response

- Slow: time to transforming rainfall excess into an outflow hydrograph > 6 hours
 - It's possible hydrological forecasting
 - It's possible reaction (civil protection, public warning,..)
- Fast: t < 6 hours
 - No time reaction
 - Radar utilities
 - Preventative measures

Clouds radar images:Rainning prediction and hydrological forecasting

Dato	Unidades	Tajo en España	España	% Tajo/España
Superficie	Km ²	55.870	506.470	11,03 %
Población en habitanifes	en miles	6.094	39.238	15,53 %
Precipitación media	mm	655	684	95,76 %
Recursos hidráulicos régimen natural	hm3	11.235	113.812	9,87 %
Aportación especifica	hm³/km²	0,219	0,225	97,33 %
Capacidad de embalse	hm³	12.000	56.063	21,40 %
Escorrentia subterránea	hm³	1.565	20.881	7,49 %
Reservas subterráneas	hm3	4.700	180.000	2,61 %

6. De control en conducciones

7. De control en impulsiones

22

12

Areal rain fall in sub basins

III f. International bodies

International bodies: Albufeira Agreement

Cooperation Agreement for protection and sustainable use of international basins between Spain and Portugal (Albufeira 11/30/98). Rivers

included:

Miño y Limia (Norte)

Duero

Tajo

Guadiana

In case of flood a continuous data interchange is produced between INAG (Portugal) and Spanish River Basin Authorities (Norte, Duero, Tajo and Guadiana)

Conclusions (1/2)

- It is necessary to develop a long-term strategy in order to reduce territory vulnerability. Keys:
 - Preparedness.Prevention and mitigation measures
 - Early warning systems
 - Civil protection plans
- Small and medium basins are prone to **flash flood**. At these conditions early warning systems are less efficient (no time for contingent plans response). **Radar utilities** could be appropriate.
- At long time preventive measures are economic and ecological more efficient. But some times structural solutions could be required.
 - Dams play a important role dealing with flood management in Spain. Must be operated in a adequate way for a successful flood management

Conclusions (2/2)

- Land use allocation should be treated with a proper approach, according to risk criteria. Coordination among different authorities (territory management, municipalities, civil protection, water authorities...) is required
- Flood risk maps could provide a important information for a appropriate land planning
 - Greater transparency on land management under the perspective of a better knowledge of risks for the location of different land uses
- International rivers Flood Risk Management Plans should be coordinated at basin level

Thank you for your attention