

Subdirección General de Agua Potable, Drenaje y Saneamiento

GOBIERNO

SEMARNAT

Gerencia de Estudios y Proyectos

de Agua Potable y Redes de Alcantarillado

Gestión del agua en la cuenca del

Segundo Coloquio Internacional. Cuencas Sustentables

Hacia la COP 16, México 2010

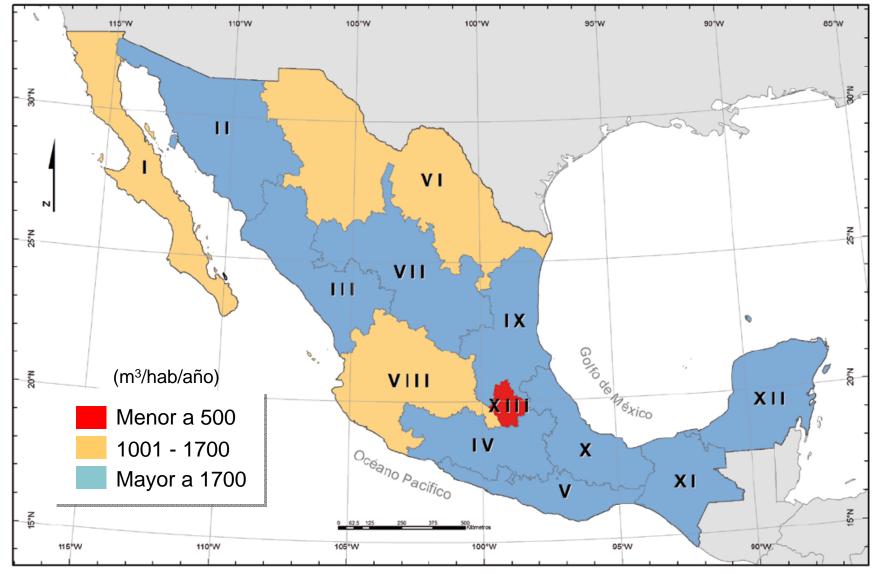
WTC, ciudad de México

del 29 de septiembre al 1 de octubre de 2010 Ing. Antonio Fernández Esparza

1°octubre2010

CONTENIDO

- 1
- Situación de los recursos hídricos en México.
- 2
- Algunos proyectos para la protección de los acuíferos
- 3
- Cuenca del Valle de México


- 4
- **Conclusiones**

1

Situación de los recursos hídricos en México

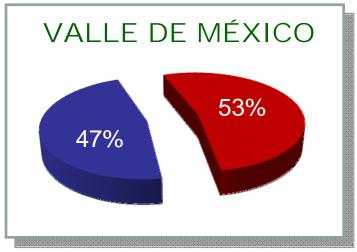
Disponibilidad natural media per cápita

Situación de los recursos hídricos en México

Contraste regional entre el desarrollo

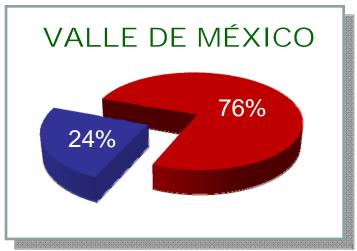
1

Situación de los recursos hídricos en México

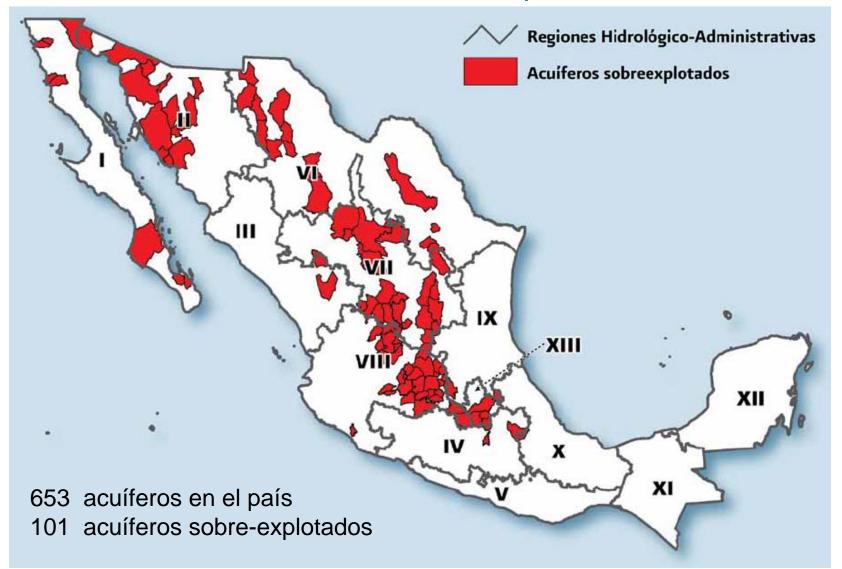

Volumen concesionado por tipo de fuente

superficial

subterránea


TODOS LOS USOS CONSUNTIVOS

USO PÚBLICO URBANO



Situación de los recursos hídricos en México

Acuíferos sobre-explotados

Gestión del Agua en la Cuenca del Valle de México

CONTENIDO

Situación de los recursos hídricos en México

Algunos proyectos para la protección de los acuíferos

3 Cuenca del Valle de México

Conclusiones

Algunos proyectos para la protección de acuíferos

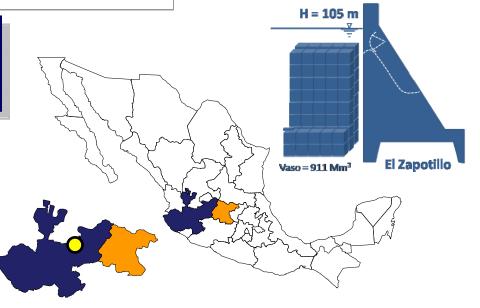
Presa El Zapotillo

La Comisión Nacional del Agua y los Gobiernos de los Estados de Guanajuato y Jalisco, desarrollan el proyecto sobre el Río Verde, para aprovechar hasta 8,6 m³/s en el suministro de agua potable a:

• Ciudad de León, Gto. 3,8 m³/s

• Altos de Jalisco 1,8 m³/s

• Guadalajara, Jal. 3,0 m³/s


La población de León se abastece principalmente de agua subterránea. La sobreexplotación de los acuíferos se estima del orden de los 3 m de abatimiento anual.

Beneficio social:

1,1 mill. hab. León, Gto. 0,3 mill. hab. Los Altos, Jal.

1,4 millones de habitantes

más la derivación a Guadalajara

El proyecto El Zapotillo permitirá transferir un volumen cercano a los 120 millones de m³ anuales, de la cuenca del Río Verde a la cuenca del Río Lerma, la cual está sobreexplotada.

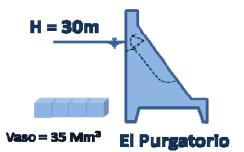
1°octubre10

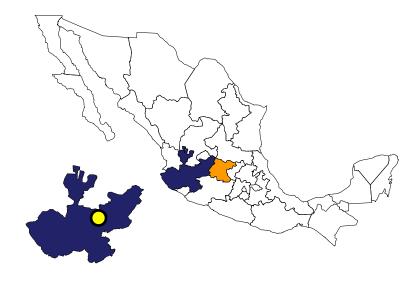
2 Algunos proyectos para la protección de acuíferos

0.8 m³/s

3,0 m³/s

Presa El Purgatorio


La Comisión Nacional del Agua y el Gobierno del Estado de Jalisco, impulsan el Proyecto El Purgatorio, sobre el Río Verde, para aprovechar : 5,6 m³/s


Beneficio social: 4,1 millones de habitantes

- Aprovechamiento presa El Salto (existente)
- Derivación de la presa El Zapotillo
- Captación por cuenca propia presa El Purgatorio 1,8 m³/s

La zona conurbada de Guadalajara se abastece principalmente de agua superficial. El 60% del suministro actual proviene del Lago de Chapala.

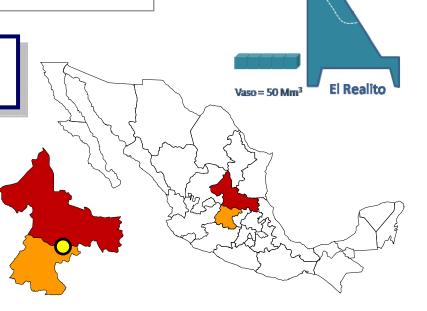
El proyecto El Purgatorio, apoyado en el proyecto "El Zapotillo", permitirá preservar el Lago de Chapala y contribuir al rescate ecológico de la cuenca Lerma—Chapala.

2

Algunos proyectos para la protección de acuíferos

Presa El Realito

La Comisión Nacional del Agua y los Gobiernos de los Estados de San Luis Potosí y Guanajuato, desarrollan el proyecto para construir una presa que regule 2 m³/s, y se aproveche para el suministro de agua potable a:


Z.C. San Luis Potosí
 1 m³/s (1ª. etapa)
 Celaya, Gto.
 1 m³/s (2ª. etapa)

El proyecto se ha concebido para abastecer de agua potable a la zona conurbada de San Luis Potosí, así como a la ciudad de Celaya, en Guanajuato.

Beneficio social: 800 mil

habitantes (1ª. etapa)

H = 88 m

Este proyecto permitirá reducir los abatimientos de los acuíferos y evitar el incremento gradual de los hundimientos que afectan a la infraestructura urbana y las viviendas.

1° octubre 10

Algunos proyectos para la protección de acuíferos

Presa Paso Ancho

El Gobierno del Estado de Oaxaca realiza los estudios de "Factibilidad técnica de las obras para el suministro de agua potable a la ciudad de Oaxaca y municipios conurbados".

El proyecto consiste en aprovechar los escurrimientos superficiales del río Atoyac, para abastecimiento de agua y generación de energía eléctrica, mediante la construcción de una presa de almacenamiento, localizada aguas abajo de la confluencia de los ríos Sola y Atoyac.

Beneficio social: 500 mil habitantes

H = 60m

La producción actual es insuficiente para satisfacer la demanda de la población, el 95% de la población tiene servicio discontinuo (tandeado) y el 60% recibe máximo 5 horas al día.

11 1°octubre10

2 Algunos proyectos para la protección de acuíferos

Acueducto II

Proyecto para suministrar 1,5 m³/s a la ciudad de Querétaro, que provendrán de los manantiales "El Infiernillo". La longitud del acueducto es de 122 km, con una altura de bombeo de 1 200 m.

El gobierno del estado de Querétaro firmó (24-mayo-2007) un contrato de prestación de servicios con Controladora de Operaciones de Infraestructura, S.A. de C.V. (Grupo ICA), que consiste en elaboración del proyecto ejecutivo, construcción, equipamiento electromecánico, pruebas e inicio de operaciones; incluye una planta potabilizadora, obras de almacenamiento y conservación de Acueducto II por 214 meses.

Conclusión de la obra: diciembre de 2010

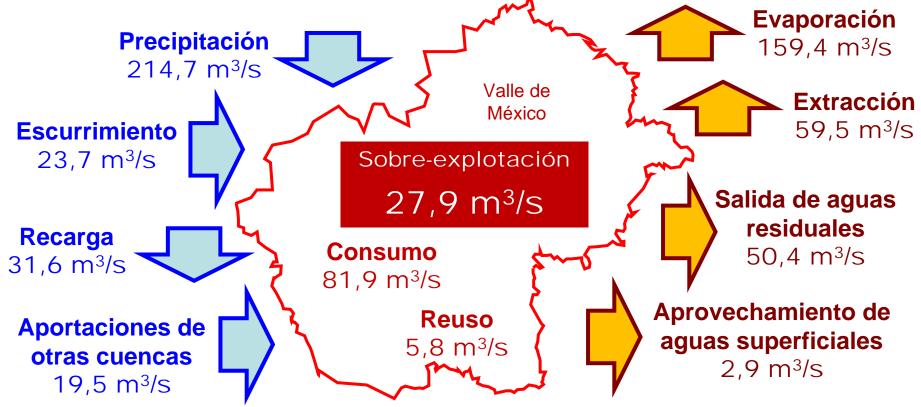
Túnel Planta potabilizadora Plantas de Tanque de Presa de bombeo 4 regulación captación

12 1°octubre10

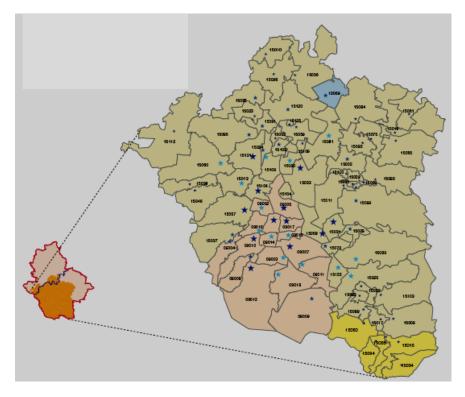
CONTENIDO

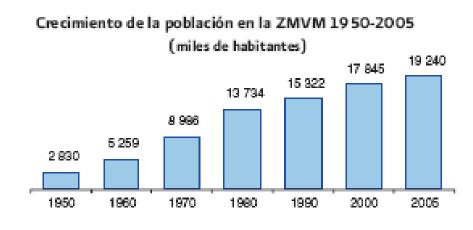
Situación de los recursos hídricos en México

- Algunos proyectos para la protección de los acuíferos
- **3** Cuenca del Valle de México


Conclusiones

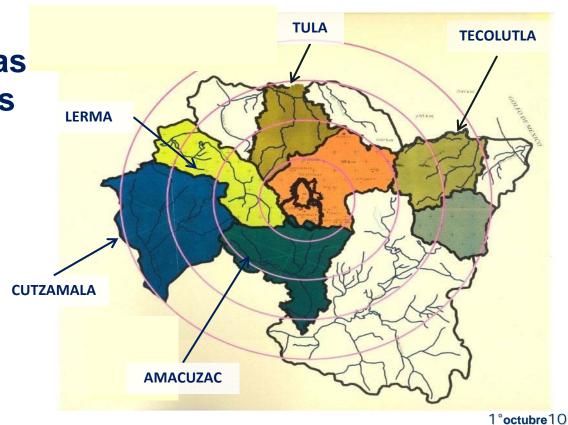
Delimitación de la cuenca Valle de México


Balance hídrico


Precipitación media histórica (1980-2004) (hm³)	Escurrimiento superficial medio (hm³)	Recarga media de acuíferos (hm³)	Disponibilidad natural media (hm³)	Disponibilidad natural media per cápita (2008) (m³/hab)
6 771	747	997	1 497	74

Sector Agua Potable

Coberturas del servicio	total	urbana	rural
Z.M. Cd. México	96,6 %	97,0 %	78,9 %



Fuentes de abastecimiento futuras

A la fecha se ha efectuado la captación de los sistemas Lerma y Cutzamala (hasta 3ª etapa); queda pendiente la construcción de la 4ª etapa (Temascaltepec).

De las alternativas originalmente planteadas quedan por explorar las correspondientes a:

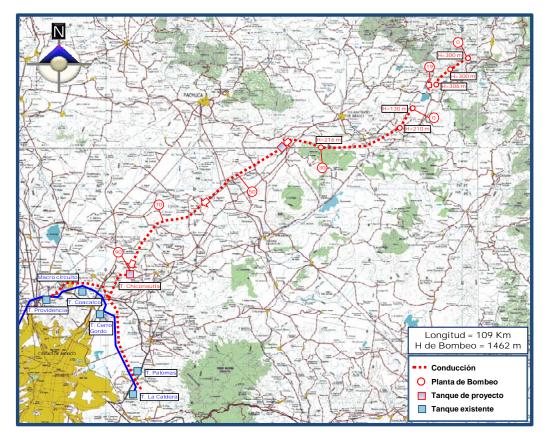
- € Tula
- **€** Tecolutla
- ♠ Amacuzac

Fuentes de abastecimiento futuras

€ Tula:

CONAGUA

- Extracción de 9 m³/s
- Rechazo de la potabilización 1,5 m³/s
- Suministro de 2,5 m³/s al estado de Hidalgo
- Suministro de 5 m³/s a la ZMCM



Fuentes de abastecimiento futuras

 Captación de 7 a 22 m³/s en diferentes corrientes y elevaciones (de 2150 a 1750 m) en el estado de Puebla.

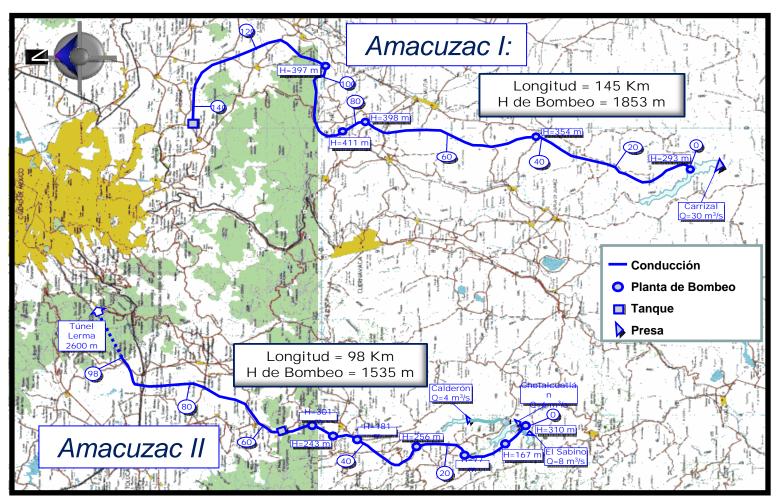
- Entrega en el oriente del Valle de México, en el cerro de Chiconautla (2395 msnm).
- Con esta opción se dejaría de generar energía eléctrica en el Sistema Necaxa.

1°octubre10

Fuentes de abastecimiento futuras

♠ Amacuzac I:

• Extracción de 30 m³/s de aguas superficiales del río Amacuzac, en los límites de los estados de Morelos y Guerrero mediante la presa El Carrizal, cinco plantas de bombeo, un acueducto de 145 Km y una planta potabilizadora.

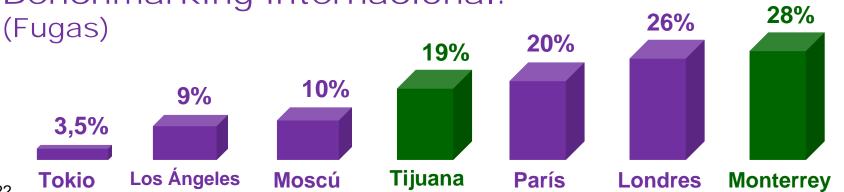

♠ Amacuzac II:

• Extracción de 18 m³/s de aguas superficiales en los límites de los estados de México y Guerrero mediante las presas Calderón, El Sabino y Chontalcuatlán siete plantas de bombeo, un acueducto de 98 Km y una planta potabilizadora.

20 1°octubre10 CONAGUA

Fuentes de abastecimiento futuras

♠ Amacuzac:

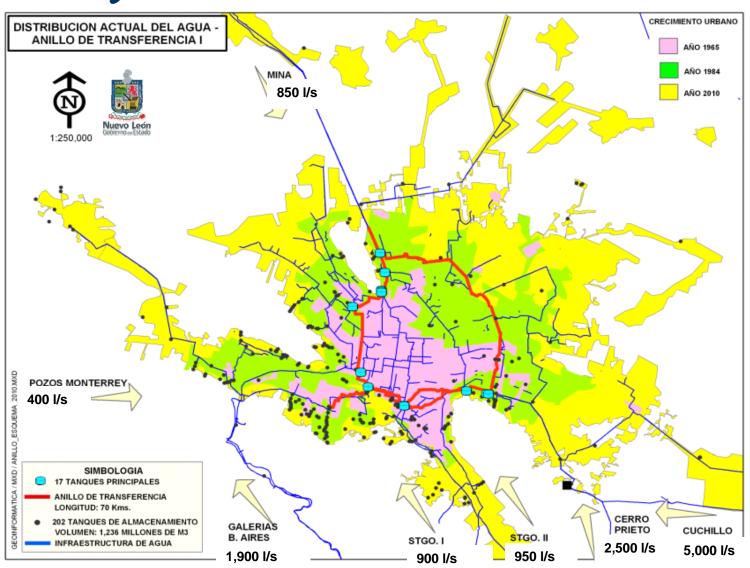

CONAGUA

Cuenca del Valle de México

Mejoramiento de eficiencia

	Abastecimiento actual: 63 m³/s					Caudal recuperado	
	Año	Población (millones)	Dotación (l/h/d)	Fugas	Consumo (l/h/d)	(m³/s)	
						Distrito Federal	Estado de México
	2005	19.3	282	40%	169		
	2020	21.4	254	30%	178	3.3	3.0
	2030	22.3	244	25%	183	4.9	4.5

Mejoramiento de eficiencia


El SACM solicitó el otorgamiento de un Apoyo No Recuperable (ANR) con recursos del Fondo Nacional de Infraestructura (FONADIN) al amparo del PROMAGUA, para el financiamiento de la elaboración de los siguientes estudios:

- Diagnóstico y Planeación Integral (DIP)
- Evaluación Socioeconómica y
- Consultoría Estratégica

a fin de conformar un Esquema de Participación Privada para incrementar las eficiencias en la prestación de los servicios de agua potable, drenaje y saneamiento para la Ciudad de México.

Monterrey V

Proyecto Integral de Infraestructura de Agua Potable y Saneamiento

Gestión del Agua en la Cuenca del Valle de México

CONTENIDO

- Situación de los recursos hídricos en México
- Algunos proyectos para la protección de los acuíferos
- Cuenca del Valle de México

4 Conclusiones

4

Conclusiones

El Valle de México

Los mexicas son los últimos en llegar...

Logran establecerse en un islote en el centro del lago de Texcoco, donde fundan la **Gran Tenochtitlán** en 1325

El Valle de México

Fundada en medio de un lago, la Gran Tenochtitlán y Tlaltelolco tenían este aspecto en el Valle de México.

Actualmente...

La baja disponibilidad de agua en el Valle de México, constituye un reto para atender las crecientes demandas de la población.

Conclusiones

La escasez no debe representar un freno al desarrollo, por lo que se requieren mayores esfuerzos en la búsqueda de alternativas de suministro.

Captación de agua pluvial


Tanque de infiltración Atlantis®

exeso de agua utilizado para recargar aguas subterraneas.
Sistema de reuso de agua deiluvia

Tanque de reuso Atlantis® para almacenamiento de agua de iluvia

Recuperación de fugas

Conclusiones

agua por persona

La dificultad de llevar el agua disponible a todas las zonas de la Z.M. de la Cd. de México, obligan a analizar la posibilidad de una gestión integrada a través de un

Ejemplos de éxito:

- **€** Monterrey
- **€** Guadalajara
- € Puebla
- **♦** San Luis Potosí

Hace 20 años, los conceptos que manejaban ambientalistas e investigadores en referencia a fugas, captación del agua de lluvia, desalación ...

iparecían ciencia ficción!

Antes, para tener agua debía abrir el grifo... ahora, para tener agua, hay que cerrarlo.

Subdirección General de Agua Potable, Drenaje y Saneamiento

GOBIERNO

SEMARNAT

Gerencia de Estudios y Proyectos

de Agua Potable y Redes de Alcantarillado

Gestión del agua en la cuenca del

Segundo Coloquio Internacional. Cuencas Sustentables

Hacia la COP 16, México 2010

WTC, ciudad de México

del 29 de septiembre al 1 de octubre de 2010 Ing. Antonio Fernández Esparza

1°octubre2010