Tools to bridge the gap between climate science and adaptation: The SimCLIM integrated modelling system

Richard Warrick

University of the Sunshine Coast, Maroochydore DC QLD 4558, Australia,
Email: rwarrick@usc.edu.au

**CLIMsystems Ltd., Hamilton, New Zealand
Email: Richard@climsystems.com

Presented at

Climate Change Impacts on Water: An International Adaptation Forum,
January 27-29, 2010
Washington DC, USA.

PART 1:

Filling the research gap: the example of the SimCLIM integrated modelling system

SimCLIM

The integrated modelling system for assessing impacts and adaptation to climatic variability and change

www.climsystems.com

SimCLIM can be used to:

- Describe baseline climates
- Examine current climate variability and extremes
- Assess risks present and future
- Investigate adaptation present and future
- Create climate change scenarios (including GCM ensembles)
- Conduct sensitivity analyses
- Examine sectoral impacts (e.g. links to DHI hydrologic models)
- Examine uncertainties
- Facilitate integrated impact analyses

The SimCLIM System

Multi-scale, open-framework system

Analyses of time-series data Example: change in risk of extreme hot days

PART 2:

Assessing the risks to domestic rainwater harvesting systems from climate variability and change in Queensland, Australia

SimCLIM Water Tank Model

SimCLIM Water Tank Model

Initial model run

Variable: Daily rainfall Station: Brisbane Aero Time-series: 1961-1990

<u>Subsequent runs</u>

Variable: Daily rainfall

Station: 41 sites

Time-series: 1961-1990

Scenario of climate change Percent change in April-September rainfall in 2050

Based on an eight-GCM ensemble, AIB emission scenario and mid-range climate sensitivity

Spatial patterns of risk: Frequency of empty tanks

Assessing adaptation options to reduce the risks

SITE: University of Queensland, Gatton		
Without Adaptation	Number of tank failures in 30 years	Longest period of empty tank (days)
Without climate change	1	39
With climate change	13	44
With Adaptation and Climate Change	Adjustment to attain low risk (≤once in 5 yrs on average)	
Additional tank storage	+ 15,000 litres	
Reduce daily consumption	- 2%	
Add catchment area	+ 10m ²	
Raise critical threshold level	+8 days	
SITE: Aughamore		
Without Adaptation	Number of tank failures in 30 years	Longest period of empty tank (days)
Without climate change	36	38
With climate change	52	41
With Adaptation and Climate Change	Adjustment to attain low risk (≤once in 5 yrs on average)	
Additional tank storage	+ 340,000 litres	
Reduce daily consumption	- 16%	
Add catchment area	+73m ²	

Raise critical threshold level

+21 days

CONCLUSIONS

- Research need: closing the gap between high-level climate science and on-the-ground adaptation
- In particular, there is a lack of user-friendly and user-accessible models and tools for bridging the gap
- Adaptation options to reduce the risks from climate variability and change can be assessed through simulation using integrated model systems like SimCLIM

