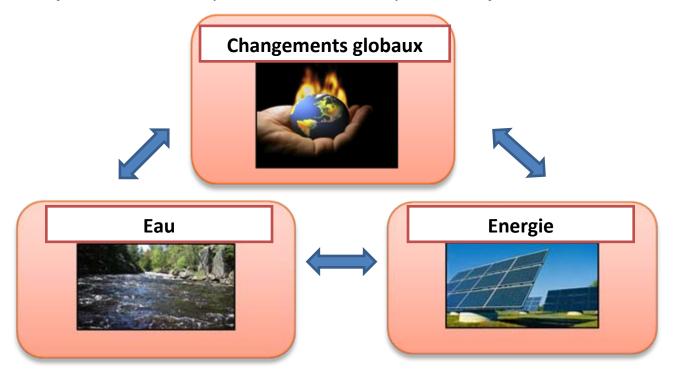

Nouvelles masses d'eau Exploitation des eaux conventionnelles et non conventionnelles

Dr. Fadi Comair Président du Réseau Méditerranéen des Organismes de Bassin (REMOB)

Eau : le défi de la pénurie


- La region souffre d'un manque d'eau :180 millions d'habitants vivent avec moins de 1,000 m³/hab/an et 80 millions font face à une pénurie (moins de 500 m³/hab/an).
- La demande en eau a doublé **durant les 50 dernieres anneés**, avec l'agriculture comme principal consommateur (64%).

Les changements globaux

Les changements globaux affecteront la disponibilité et l'utilisation de l'eau et l'énergie

Ces changement jouent un rôle amplificateur sur la compétition déjà intense entre ces deux ressources.

- L'impact des CG sur les systèmes hydrologiques régionaux et globaux vont s'intensifier, avec certaines régions plus affectées que d'autres.
- Chaque situation requiert donc une approche et utilisation locale appropriée et durable des ressources en eau et en énergie.

Effets du changement climatique: Liban

- Le 3^{eme} rapport du Groupe Intergouvernemental d'Experts sur l'Evolution du Climat (GIEC) publié en 2008 prévoit pour la région un réchauffement dans une fourchette de 2°C à 4°C.
- Les régions du Liban ou les pluies se produisent durant 80 à 90 jours se réduirait à une période de 50-60 jours
- Les conséquences les plus graves pour notre pays concerneront l'approvisionnement en eau qui dépend de la fonte des neiges en grande partie.

	Conditions initiales	Réchauffement 2°C	Réchauffement 4°C
Eau provenant des	1200 Mm ³	700 Mm ³	350 Mm ³
neiges			
Total eaux	2700 Mm ³	2200 Mm ³	1850 Mm ³
renouvelables			

Conséquences liées aux conflits d'usage (utilisation sectorielle entre eau potable/irrigation/eaux transfrontalières)

Mesures pour éviter le scénario de Stress Hydrique

Premièrement : réduire les quantités d'eau déversant dans la mer

 Par l'application et la mise à jour du Plan Stratégique (mesures déjà mentionnées) afin d'améliorer la qualité et la quantité de l'eau

Introduire de nouveaux concepts:

- Utilisation des ressources en eau non conventionnelles
- Traitement et réutilisation des eaux usées
- Exploitation des sources d'eau marines
- ✓ Dessalement de l'eau de mer

Les Eaux Non Conventionnelles

- ✓ Traitement et réutilisation des eaux usées
- Exploitation des sources d'eau douce marines
- ✓ Eaux grises
- ✓ Dessalement de l'eau de mer

Eaux Non Conventionnelles: Liban

Réutilisation des eaux usées	180 Mm ³	
Eaux sous-marines	385 Mm ³	
Total eaux Non Conventionnelles	565 Mm ³	

L'exploitation des ressources en eau non conventionnelles permet de combler en partie le déficit qui s'annonce pour 2040 (1660 Mm³ de déficit contre 1095 Mm³)

Assurer de la Demande en Eau au Liban

Deux scénarios

Stress Hydrique

Gestion Durable des Ressources Hydrauliques - GIRE

~ 400 Mm³

Stockages
Barrages et
Lacs Collinaires

Eaux non conventionnelles

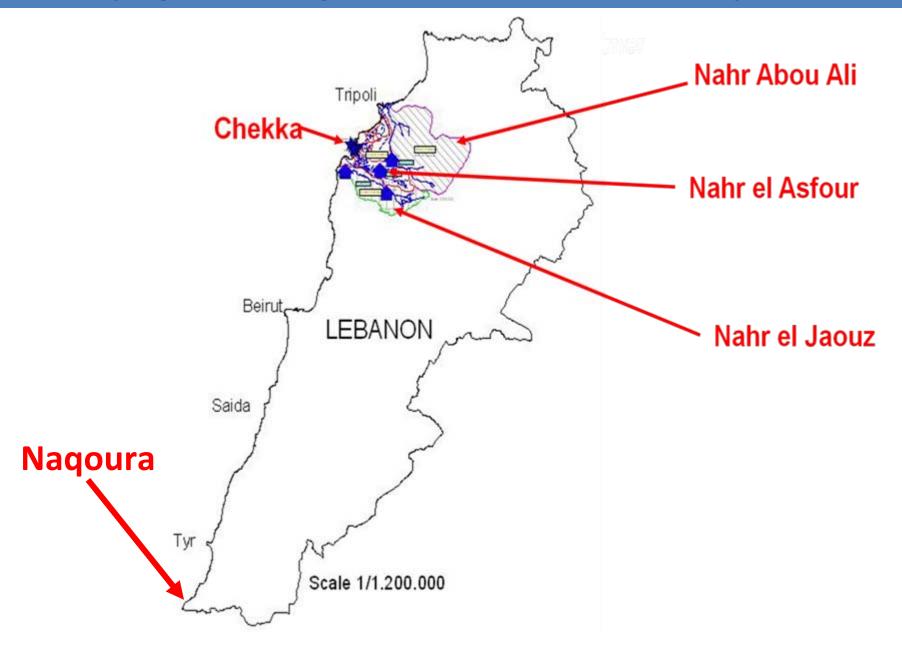
Efficacité des réseaux

Eau potables 50 % → 80% 2040

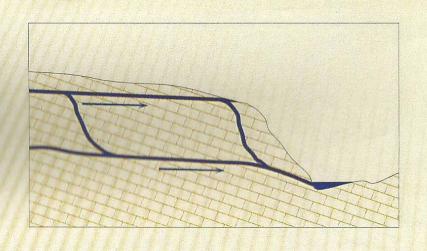
Irrigation: Nouvelles pratiques ??

Etablissements des Eaux

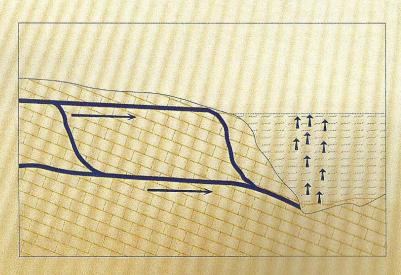
Ministre de l'Agriculture


Bilan Hydraulique équilibré

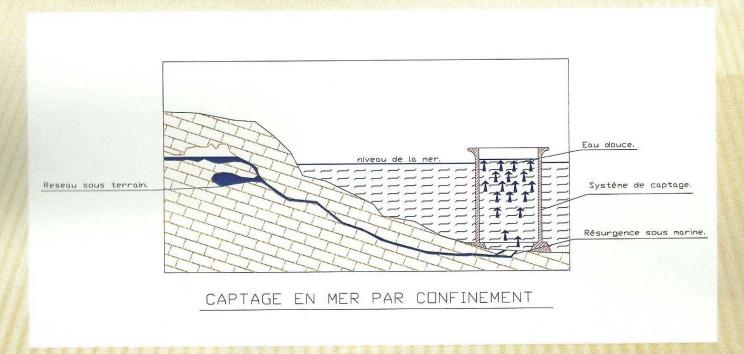
Plan Stratégique du DGRHE 2000-2010-2018


Principes Généraux

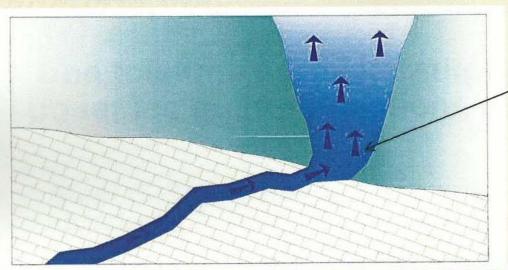
- Assurer de nouvelles ressources en eau(barrages, lacs, recharge des aquifères...)
- Mettre en place des projets d'eau potable (Réseaux de distribution, améliorer l'efficacité des réseaux existants, implication du Partenariat Public-Privé,...)
- Envisager des projets d'irrigation (techniques d'irrigation durable, assurant la sécurité alimentaire, efficacité du réseau...)
- Envisager des infrastructures pour atténuer les risques d'inondations, rectification et alignement des lits des rivières.
- Exploiter les eaux non conventionnelles (Nouvelle Masse d'eau)


Captages de résurgence d'eau douce en mer : Projets Pilotes

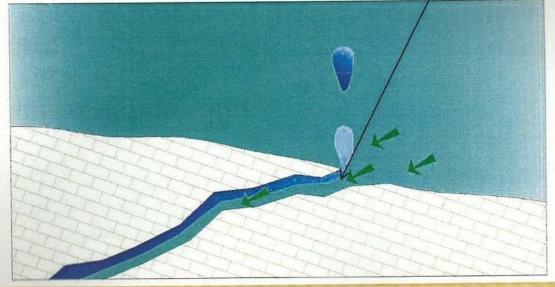
FORMATION D'UN RESEAU KARSTIQUE



Ruissellement des eaux de pluie à une époque où le niveau de la mer était beaucoup plus bas qu'aujourd'hui


Remontée du niveau d'eau Apparition de résurgences d'eau douce

PRINCIPE DE LA METHODE DE CAPTAGE


- 1. Nécessité d'une barrière physique entre l'eau douce et l'eau de mer
- 2. Contrainte impérative de ne pas rompre l'équilibre naturel de l'écoulement
 - Mise en œuvre d'une enceinte étanche avec contrôle des sorties
 - Contrôle du niveau d'eau douce pour reproduire la charge hydraulique naturelle
 - Enceinte suffisamment large pour laisser s'épanouir le jet en sortie

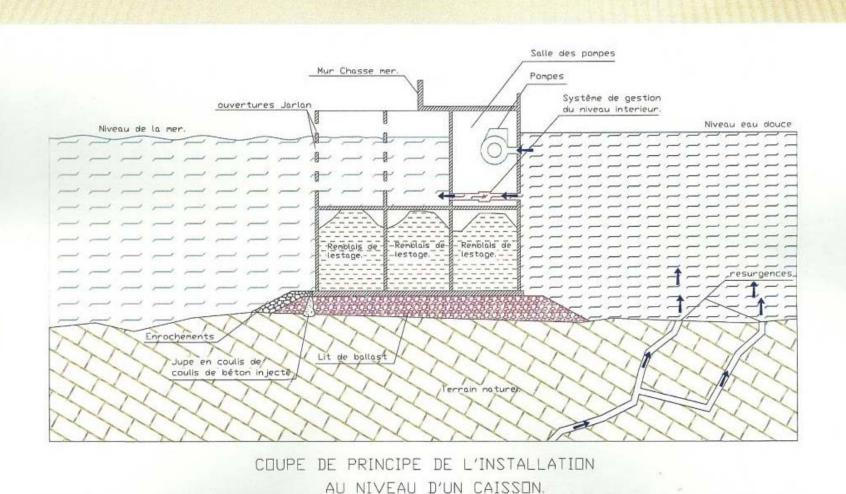
PHÉNOMÈNE D'INTRUSION SALINE

Vitesse de sortie élevée ou petit diamètre de sortie

Vitesse de sortie faible ou grand diamètre de sortie

Fiabilité d'une résurgence

Une fois une sortie karstique identifiée, il faut se poser les quatre questions essentielles suivantes :


- 1. Etant donné le risque d'intrusion saline à travers le réseau karstique, le rejet observé est-il un rejet d'eau douce ?
- 2. Si l'eau rejetée est effectivement douce, l'est elle de façon durable toute l'année ?
- 3. Quel est le débit annuel du rejet ?
- 4. L'installation d'une enceinte de captage peut-elle perturber l'équilibre naturel du réseau karstique ?

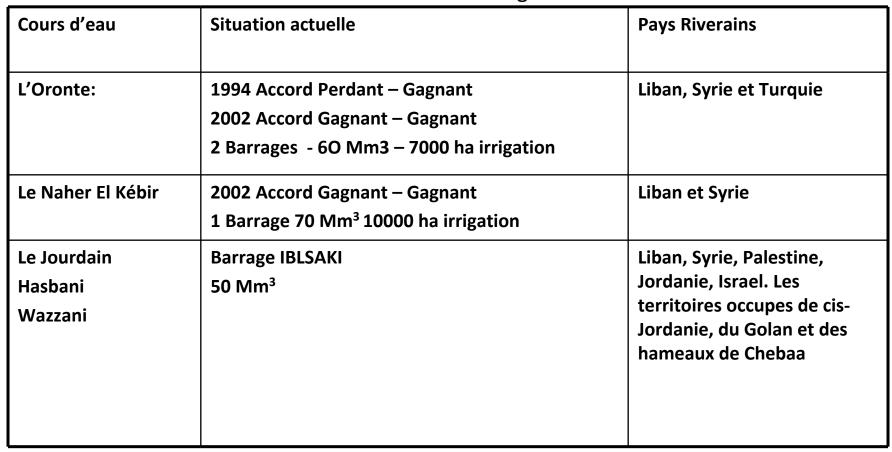
ETAPES DE LA CAMPAGNE DE VALIDATION

- 1. Envoi d'une équipe de plongeurs pour observations, films, mesures géométriques et premières mesures (vitesse, salinité) en sortie de quelques sources jugées intéressantes
- Conception et construction d'une chambre de passage adaptée (géosynthétique à priori)
- Envoi d'une équipe de plongeurs renforcée pour confiner la sortie provisoirement et « simuler » au réel l'enceinte de captage.

Construction de l'enceinte de captage (moderée)

(PROFONDEUR MODEREE)

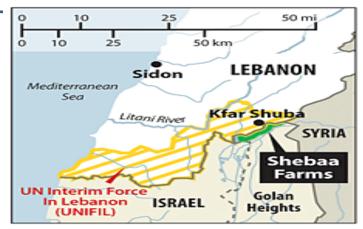
30


Hydrodiplomatie Bassins Transfrontaliers

Conflits sur les cours d'eau transfrontaliers au Liban

Textes législatifs de référence

- Convention des Nations Unies de 1997
- Partage équitable et utilisation raisonnable.
- Mobilisation d'une « Nouvelle Masse d'Eau » globale UPM.


Conflit entre le Liban et Israël

* Hasbani-Wazzani

- 1952 proposition de Johnston non retenue (35 Mm3)
- Situation de Stress Hydrique (50 Li jour/hab.) au Liban
- Projets Hydrauliques: 2002 station de pompage, 4 MCM/an (en cours d'exploitation) et le barrage d'Ibl Saqi (conception terminée – 50 Mm³)

Hameaux de Chebaa:

- L'identité territoriale
- Partage de l'eau avec le Liban affectera le Dan considéré par Israël en tant qu'affluent d'identité Israélienne

Conflit entre Israël et la Syrie

- Plateau du Golan: Territoires occupés par Israël
- 22% de l'alimentation en eau d'Israël prévient du plateau du Golan. Une partie de ce taux se déverse dans le lac de Tibériade qui constitue le réservoir majeur d'Israël

Conflit avec la Jordanie et la Palestine

- Situation de stress hydrique continue
- Allocation de l'eau: moins de 60L /Jour/Hab en Jordanie et 30L/jour/hab en Palestine
- Accord Unilatéral « Oslo » entre La Jordanie Israël et la Palestine- Israël (partage inéquitable de l'eau)

<u>Critères d'exploitation unifiés :</u>

Secteur d'eau potable

- 200 l/j/personne au maximum
- Fuites dans les réseaux :

un taux de 25 % (max)

Secteur d'irrigation

- Volume d'eau optimal pour irriguer une parcelle d'un hectare: 7 000 m3/ha (max)
- Protection de l'environnement
- Principe « Pollueur-Payeur »

Eau conventionnelle			
Bassin du Jourdain	1.8 Milliards m ³ /an		
Eau non conventionnelle			
Canal (mer Rouge-Morte/mer Med-Morte)	1.0 Milliards m ³ /an		
Eaux usées traitées	0.5 Milliards m ³ /an		
Dessalement	0.3 Milliards m ³ /an		
Sources d'eau marine	0.2 Milliards m ³ /an		
Apport mobilisé	4.0 Milliards m ³ /an		

Ce volume doit être partagé équitablement entre les pays du bassin afin de restituer aux pays arabes leurs territoires occupés en 1967, à savoir, la cis-Jordanie le plateau du Golan (Syrie) et les hameaux de Chebaa (Liban).

MERCI

