

Flood Risk DSS BeDam: Dam management module

Laura Panizo University of Málaga 19th October, Málaga

BeDam - overview

- Objectives: support dam managers decisions in flood episodes using:
 - Simulation of management policies applied to a single dam.
 - Synthesis of maneuvers for single dam management.
- Adapted to Guadalhorce river basin in floods:
 - Model of Guadalhorce + Guadalteba as a single dam.
 - Model of Conde del Guadalhorce.

BeDam – How it works

BeDam-features

- Available functionality:
 - Visualization of sensor data (manually loaded).
 - Simulation of discharge policies.
 - Synthesis of maneuvers for dam management.
- Hydrograph format compatible with Hydroview (import/export).
- Results can be exported as images or files (internal format).
- GUI and help in Spanish and English, configurable by the user.
- Desktop application with multilingual support.

Simulation of discharge policies

- Objective: evolution of dam parameters when specific policy is applied.
- Inflow hydrograph (from *.hdr file).
- Initial dam state.
- Policy configurable parameters (if any).
- Set of discharge policies applicable to each dam:
 - MEV, optimum discharge, adaptive optimum, and Current State.
- Simultaneous simulation of all discharge policies using the same initial state of the dam.

Simulation of discharge policies

Simulation of discharge policies

- Objective: set of maneuvers that make the dam evolve as desired.
- Based on a previous simulation of a discharge policy.
- Constraints:
 - describe the desired dam evolution
 - restrict one or more dam parameters (level, outflow, etc.)
 - Types of constraints:
 - Maximum and minimum constant values.
 - Maximum and minimum deviation with respect to the original curve.
 - Constraints in the complete episode or in regions (time interval).

Customization

- Modular architecture to incorporate new dams and discharge policies.
- UMA modeling tools:
 - For dam and discharge policies.
 - Reduce modeling time.
 - More reliable models.
- Web service version ready for integration of all DSS.

Thank you for your attention

www.said-project.eu

Live Demo

Hydrograph file: gh+gt_121212.hdr

1st Simulation2nd Optimization

Simulation

- Init dam state:
 - all gates closed
 - Volume: 249887240.00 m³
 - Level: 360.219 m.a.s.l
- MEV (default configuration):
 - End level: 360

Optimization (I)

- Constraints over MEV results
 - 1 Region (the complete flood episode)
 - Level: Upper boud 361.5 m.a.s.l.
 - Outflow: Upper bound 160 m³/s

Optimization (II)

- Constraints over MEV results
 - Level: Upper bound 361.5 m.a.s.l.
 - Outflow 2 Regions:
 - Region 1 (00:00 16:59)
 - Upper bound 160 m³/s
 - Region 2 (16:59 09:59)
 - Upper bound 100 m³/s

