Food security, co-management and the ecosystem approach to fisheries

Jeppe Kolding (University of Bergen, Norway)
Paul van Zwieten (Wageningen University, The Netherlands
Michael Plank (University of Canterbury, New Zealand
Richard Law (University of York, UK)
Hans D. Gerritsen (Marine Institute, Ireland)
David Reid (Marine Institute, Ireland)
African Great lakes Conference, Entebbe 2-5 may

IUCN

The big challenge

With a growing population: How do we reconcile food and conservation?

Which fishing pattern gives the highest yield

 and least structural impact on the community?

Johannesburg 2002 Declaration § 31 (a):
«Stocks should be kept at biomass levels that can produce maximum sustainable yields (MSY).»

CBD Malawi principles for Ecosystem Approach: «A key feature of the ecosystem approach includes conservation of ecosystem structure and functioning»

The aquatic food web is size structured...

..abundance is inversely correlated with size

Community size spectrum

The distribution of biomass by body size follows regular patterns

Under conventional selective fishing slope and intercept will change

Changes in the North Sea

Garcia et al. 2012

Balanced harvesting... (Garcia et al 2012)

Size
.. is fishing as many sizes and species as possible in proportion to natural productivity

Lake Kariba

Lake Kariba

Mesh size distributions

Mesh size distributions and catch rates (Zambia)

Comparison between unfished and heavily fished areas in Lake Kariba

Lake Kariba 1980-1994 Standardized CPUE (grams/ 45 m net)

Comparison between unfished and heavily fished areas in Lake Kariba

Kolding et al. 2015

Comparison between unfished and heavily fished areas in Lake Kariba

10000 Fished

Number of species has not changed and slopes are parallel meaning ecosystem structure is maintained while yields are 6x higher than under regulations

Bangweulu swamps Northern Zambia

Bangweulu swamps

- Fish are getting smaller
- Rampant use of illegal gears

Bangweulu swamps Northern Zambia

$\begin{aligned} & \text { Mesh size } \\ & (\mathrm{mm}) \end{aligned}$	Total number of gear by type				$\begin{gathered} \text { Mesh size } \\ \text { cum \% } \end{gathered}$
	gillnets	kusikila	seines	weir traps	
3				8,869	13
4				- 8,358	41
6				2,3.	49
8				8	50
10					
25	534	17		Vad ig	5
38	6,719	8		a	75
50	4,233	135	-	\bigcirc	90
63	1,260	64			97
76	554				99
89	136		-		99
102		-)		
114					
127	255				100
140	-				
Total:	13,691	93	28	14,936	29,844
\%	46			50	100
\% legal	22				

Species and size composition by gear

two multispecies fisheries

Celtic Sea (EU)

major commercial fishery
demersal, ~15 spp, trawls quotas, minimum landing sizes 100,000 to 150,000 tonnes yr^{-1}
>1000 vessels

Bangweulu Swamps (Zambia)

small-scale artisanal fishery
>30 spp, gillnets, seines, traps
largely unregulated
$\sim 15,000$ tonnes yr^{-1}
~ 5000 fishers

size distributions of yield

biomass yields as a function over body mass (aggregated over species)

size distributions of catch

how is this possible?

model of an unregulated fishery:
fishers share an aquatic ecosystem (commons)
each fisher decides what size of fish to catch what happens to the fish stock and catch?
how does fishing mortality $F(x)$, aggregated over fishers, get distributed over over fish body size x ?

Dynamic size-spectrum model a different ecological model:
stochastic event

bookkeeping of biomass

$$
w_{a} \quad w_{b}
$$

\square

$$
w_{c}=w_{a}+K w_{b}
$$

Model overview (Law et al. 2015)

1. The fish population
abundance

2. The fishers

- know nothing about ecology or size-spectrum dynamics
- do know their own catch, and the catch obtained by their neighbours - and their gears

From time to time he will evaluate his own catch (and gears) compared to those of his neighbours. If he catches less, he will tend to shift gear

rule for each individual fisher

update net mesh from time to time
 new net mesh size chosen uniformly at random on range of body sizes more likely to move if his yield (cpue) is small compared to others: $1-Y_{i} / \max \left(Y_{j}\right)$.

Result = emergence of balanced harvesting

constant biomass \quad all fishers get equal biomass yield
a fisher cannot increase yield by a change in gear
Nash equilibrium:
No fisher has an incentive to change fishing strategy, given the strategies of all other fishers
$\boldsymbol{F}(\boldsymbol{x})$ proportional to productivity $\quad \Rightarrow$ balanced harvesting

aggregate biomass yield

caveats:

total fishing effort must still be controlled biomass yield and profit are very different things

Conclusions

- Mesh size regulations in small-scale fisheries are impeding maximum yield and healthy resilient ecosystems
- When food security (biomass) is more important than commercial value, then catch-rates (CPUE) will regulate the fishing pattern towards a Balanced harvest regime.
- For co-management to work the State will have to abandon size and gear regulations.

