Exploring Ways to Benchmark River Basin Performance

Chris Morris, Senior Water Resources Engineer NARBO Third General Meeting, 21 February 2008, Surakarta.

Where are we? Overall basin performance Benchmarking

NARBO Benchmarking

Basin Status Benchmarking

Other areas..?

Citarum River Basin Strategic Planning Framework

VISION

"The government and community working together for clean, healthy and productive catchments and rivers, bringing sustainable benefits to all people of the Citarum River Basin

Constructing Roadmaps

NARBO Benchmarking

RBO Status • **RBO** Governance Planning Water Allocation **Cost Recovery** Data Management Financial Efficiency **River Basin** Organization **Internal Business** Finance Processes Learning and Growth **Stakeholders** Customer Involvement HR Development Customer Feedback ADB **Technical Development Environmental Audits Organizational Development Basin Livelihood**

The Design of a IWRM Basin Performance Benchmarking Program Research, June 2007 to Feb 2008, by:

Kei Saiki, The University of Tokyo

Supported by:

Asian Development Bank

Balai Besar WS Citarum (Citarum RBO)

PJT 2, PJT 1, IWMI

Languan Lake Development Authority

Study outputs?

Design of a river basin performance benchmarking program

- performance indicator design,
- benchmarking guideline, and

design of an output publication
 Verification in 2 river basins

Verification process?

Self-Assessment

Peer Review

Plenary Mtg

Publication

IWRM Elements and Existing River Performance Benchmarking Systems

River Basin Organization Stakeholder Participation River Basin Planning Public Awareness Water Allocation Water Rights Wastewater Permits **IWRM** financing **Economic Instruments** Regulations Infrastructure for Multiple Benefits **Private Sector Contribution** Water Education

Watershed Management **Environmental Flows Disaster Management Flood Forecasting** Flood Damage Rehabilitation Water Quality Improvement Water Quality Monitoring Wetland Conservation **Fisheries** Groundwater management Water Conservation **Decision Support Information**

IWRM Diagram

Economic Benefit Basic Livelihood Environmental Sustainability

Water Utilization Disaster Vulnerability Envt'l Management

Basin Status Benchmarking

River Basin Organization
Internal Business Process
Finance
Learning and Growth
Stakeholders

Classification of indices

Physical
performanceHuman activities
performance

Recreational water quality Flood vulnerability Chemical Spills Environmental Water Quality Biodiversity

Raw water supply (Flood Vulnerability)

Basin Status Benchmarking

Water Utilization

Disaster Vulnerability Recreational Water Quality Raw Water Quantity

Flood VulnerabilityChemical Spills

Environmental Management Environmental Water QualityBiodiversity

Recreational Water Quality

Fecal Coliforms

Score	4	3	2	1	0
Fecal coliforms (count / 100ml)	< 200	< 1,000	< 2,000	< 10,000	10,000 <

Definition of Water Quality Score

- 4; Fine quality; Suitable for recreational use
- 3; Fair quality; Acceptable for recreational use
- 2; Moderate quality; Acceptable for fish farming and animal husbandry
- 1; Poor quality; Limited agricultural use
- 0; Highly poluted quality; Dangerous for any use

Water <u>Ut</u>ilization

Raw Water Supply

Water Utilization

Water Supply / Planned Ratio

N =

O =

P =

i =

$$SPR = \frac{1}{N} \sum \left(\frac{O}{P}\right)_i$$

Where:

SPR = Supply Planned Ratio Index

Number of planning segments in a year

- Observed amount of water supply
- Planned amount of water supply

planning segment

Score	4	3	2	1	0
ASPR	97.5% <	95% - 97.5%	92.5% - 95%	90% - 92.5%	< 90%
MSPR	95% <	90% - 95%	85% - 90%	80% - 85%	< 80%

ASPR: Annual average SPR MSPR: Minimum SPR throughout a year

Flood Vulnerability

Disaster Vulnerability

Flood Vulnerability Index

$$FVI = \frac{1}{N} \sum \left(\frac{D}{P}\right)$$

Where:

N =

D =

P =

- *FVI* = Flood Vulnerability Index
 - Target period [year]
 - Number of people killed in flood events in a year in the target catchment

Population within the catchment in a year

		0	Ζ		0
Number of people killed per million	₹V < 0.30	< 1.00	< 4.00	< 10.0	10.0 < FV ADB

15

Chemical Spin Vulnerability

Disaster

Cadmium

Score	4	3	2	1	0
Cadmium (mg/L)	< 0.003	0.003 - 0.01	0.01 - 0.05	0.05 - 0.15	0.15 <

7 inc

Score	4	3	2	1	0
Zinc (mg/L)	< 0.03	0.03 - 0.05	0.05 - 0.12	0.12 - 0.20	0.20 <

Definition of Water Quality Score

- Safe water with toxic substances kept in safe level 4;
- 3; Safe water with toxic substances kept in acceptable level
- Water with toxic substances in alarming level
- 2; 1; Water with toxic substances in dangerous level
- 0; Water with toxic substances in catastrophic level

Environmental Management

17

Environmental Water Quality

Dissolved Oxygen

Score	4	3	2	1	0
Dissolved Oxygen (mg/L)	7.0 <	5.0 – 7.0	3.0 – 5.0	1.0 – 3.0	< 1.0

Total Phosphorus

Score	4	3	2	1	0
Total Phosphorus (mg/L)	< 0.04	< 0.2	< 1.0	< 5.0	5.0 <

Ammonia Nitrogen

Score	4	3	2	1	0	
Ammonia Nitrogen (mg/L)	< 0.20	0.20 - 0.50	0.50 - 1.0	1.0 - 2.0	2.0 <	DB

Biodiversity

$$BDI_i = \frac{Obs_i}{Exp_i} \times 100$$

- **BDI**
- Exp =

i =

- **Biodiversity Index**
- Expected number of species at selected sites in the catchment
- Observed number of species at selected sites in the catchment
- Elements to be assessed i.e. fish, macroinvertebrate, and aquatic plants.

Fish

- Macro-invertebrates
- **Aquatic Plants**

Score	4	3	2	1	0
BDI (%)	75 <	50 - 75	25 - 50	0 - 25	0
					ADB
					18

Environmental Management

Available data

Sub-Indicator	Citarum River Basin	Laguna Lake Region
Fecal Coliforms	0	0
ASPR	0	×
MSPR	0	×
FVI	Δ	0
Cadmium	0	0
Zinc	0	0
Total Phosphorus	×	0
NH4-N	0	0
Dissolved Oxygen	0	0
Fish O/E	×	×
Invertebrates O/E	Δ	×
Aquatic Plants O/E	Δ	×

Citarum BS Benchmarking

	Key Performance Area	Maximum Score	Basin Score
	Water Utilization	4.0	0.5
	Water Quality	4.0	1.0
	Fecal Coliforms	4.0	1.0
	Raw Water Supply	4.0	0.0
	ASPR	4.0	0.0
	MSPR	4.0	0.0.
	Disaster Vulnerability	4.0	3.0
	Flood Vulnerability	4.0	4.0
	FVI	4.0	4.0
	Chemical Spills	4.0	2.0
	Cadmium	4.0	2.0
	Zinc	4.0	2.0
E	nvironmental Conservation	4.0	
	Water Quality	4.0	1.5
	Total Phosphorus	4.0	N.A.
	NH ₄ -N	4.0	0.0
	Dissolved Oxygen	4.0	3.0
	Biodiversity	4.0	
	Fish O/E	4.0	N.A.
	Invertebrates O/E	4.0	N.A.
	Aquatic Plants O/E	4.0	N.A.
	Average Score	4.0	(1.50)

Laguna BS Benchmarking

Water Utilization	4.0	
Water Quality	4.0	0.0
Fecal Coliforms	4.0	0.0
Raw Water Supply	4.0	
ASPR	4.0	N.A.
MSPR	4.0	N.A.
Disaster Vulnerability	4.0	2.75
Flood Vulnerability	4.0	2.0
FVI	4.0	2.0
Chemical Spills	4.0	3.5
Cadmium	4.0	3.0
Zinc	4.0	4.0
Environmental Conservation	4.0	
Water Quality	4.0	1.7
Total Phosphorus	4.0	1.0
NH ₄ -N	4.0	2.0
Dissolved Oxygen	4.0	2.0
Biodiversity	4.0	
Fish O/E	4.0	N.A.
Invertebrates O/E	4.0	N.A.
Aquatic Plants O/E	4.0	N.A.
Average Score	4.0	(2.00)

An Example of a Basin Performance Report Diagram

Expected Output of Benchmarking Recommendations

- 1. Basin performance report
- 2. Set basin performance targets
- 3. Set next benchmarking program
- 4. Recommendation for data management system improvement

Reinforcement Why Benchmarking?

- A process of continuous improvement through:
 - comparison with peer RBOs, and
 - comparison with the same RBO in different timeline.

Detect the gaps for sound investment Not a solution, but a tool

Key Lessons and Issues from Implementation

Benchmarking program side

- Data availability
- Adequacy of grading threshold values

RBO side

- Strong commitment
- Institutional arrangement
- Constraints
 - time and capacity

Technical Issues raised

Elements

- Sediment problem
- Forestry (land use)

Definition

- Raw water supply
- Flood vulnerability
- **Threshold Values**
 - Single or multiple

- Groundwater management
- Solid waste management

"Basin Performance" Future Research

Water-related

Expansion

Water quality, Water supply, Infant mortality Literacy Livelihoods

For More Information

Chris Morris, cmorris@adb.org

Kei Saiki, c370071@yahoo.co.jp

